Acta Crystallographica Section E

Structure Reports Online

Poly[tetrakis(4-aminopyridinium) [hexadeca-μ-oxo-decaoxooctamolybdate(VI)]]

James R. Nelson, ${ }^{\text {a }}$ Amy Narducci Sarjeant ${ }^{\mathrm{b}}$ and Alexander J.

Norquist ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and ${ }^{\text {b }}$ Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA

Correspondence e-mail:
anorquis@haverford.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.022$
$w R$ factor $=0.047$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\left\{\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]\right\}_{n}$, contains extended $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}^{4 n-}$ chains, built up from distorted MoO_{6} octahedra sharing vertices and edges. A network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to stabilize the crystal packing.

Comment

The chemistry of polyoxomolybdate anions has been the focus of intense research for many years owing to a presence of a host of desirable physical properties associated with compounds containing such groupings. These materials are generally constructed from $\left[\mathrm{MoO}_{x}\right]$ polyhedra that share common edges and vertices with one another, forming large anionic architectures. Special attention has been focused upon octamolybdates owing to their great structural diversity. Compounds containing both a range of molecular (Lindqvist, 1950) and extended (Böschen et al., 1974) octamolybdate anions are well known. These compounds often include organic amines, which can act as charge-balancers, structure directors and hydrogen-bond donors (Cruywagen, 2000).

(I)

Our interest in polyoxomolybdates is focused upon the relationship between the structure of the organic amine and the resulting solid. In order to elucidate the factors governing this relationship, a wide range of organic amines has been used under diverse reaction conditions (Gutnick et al., 2004; Muller, Cannon et al., 2005; Muller, Narducci Sarjeant \& Norquist, 2005; Thorn et al., 2005; Nelson et al., 2006; Veltman et al., 2006). As a continuation of these studies, the title compound, (I), was synthesized under mild hydrothermal conditions; it contains extended $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}^{4 n-}$ chains.

Received 27 June 2006
Accepted 27 June 2006

Figure 1
The asymmetric unit of (I), together with additional atoms to complete the octamolybdate unit and its connections with other units, with displacement ellipsoids drawn at the 50% probability level (spheres of arbitrary radius for the H atoms). Atoms labeled with a hash (\#), plus (+) or asterisk $\left(^{*}\right)$ are at the symmetry postions $(-x,-y, 1-z),(1+x, y, z)$ or $(1-x,-y, 1-z)$, respectively.

Figure 2
The $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}{ }^{4-}$ chains in (I), shown in both (a) ball-and-stick and (b) polyhedral representations.

Four crystallographically distinct molybdenum centers are observed in (I). The $\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{6}$ octahedra are typically distorted as a result of the second-order Jahn-Teller activity of $\mathrm{Mo}^{\mathrm{VI}}$ (Kunz \& Brown, 1995). Both bridging $\left(\mathrm{O}_{b}\right)$ and terminal $\left(\mathrm{O}_{t}\right)$ oxo ligands are observed. The $\mathrm{Mo}-\mathrm{O}_{t}$ bonds [1.693 (3)-

Figure 3
The packing of (I). Red octahedra represent $\left[\mathrm{MoO}_{6}\right]$ groups. H atoms have been omitted for clarity.
1.712 (3) \AA] are shorter than the $\mathrm{Mo}-\mathrm{O}_{b}$ bonds $[1.777$ (3)2.373 (3) Å] (Fig. 1).

The infinite $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}^{4 n-}$ chains are generated through inversion symmetry. This chain connectivity has been observed previously (Chakrabarti \& Natarajan, 2002; Fang et al., 2004; Thorn et al., 2005) (Fig.l 2). The chains propagate along [100] (Fig. 3).

Two unique $\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right]^{+}$cations are present in (I); only the pyridine N atom in each 4 -aminopyridine molecule is protonated. These cations reside between the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}^{4 n-}$ chains, and act as both charge-balancers and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbond donors (Table 2). Aromatic $\pi-\pi$ stacking interactions between the cations are observed along [100] at a distance of 3.662 (3) A.

Experimental

A mixture of $\mathrm{MoO}_{3}(0.4637 \mathrm{~g}, 3.221 \mathrm{mmol})$, 4-aminopyridine $(0.0712 \mathrm{~g}, 0.757 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}(0.1968 \mathrm{~g}, 2.008 \mathrm{mmol})$ and deionized water $(6.2327 \mathrm{~g}, 0.346 \mathrm{~mol})$ was added to a 23 ml Teflon-lined pressure vessel. The reaction gel was heated to 453 K for 24 h , and then cooled slowly to room temperature at a rate of $6 \mathrm{~K} \mathrm{~h}^{-1}$. The vessel was opened in air and the reaction products were recovered by filtration.

Crystal data

$4 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$
$M_{r}=1564.00$
Triclinic, $P \overline{1}$
$a=7.7680(18) \AA$
$b=11.923$ (2) \AA
$c=12.208$ (4) \AA
$\alpha=63.03$ (2) ${ }^{\circ}$
$\beta=74.37$ (2) ${ }^{\circ}$
$\gamma=79.220(17)^{\circ}$

Data collection

Oxford Diffraction Xcalibur3 diffractometer
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.88, T_{\text {max }}=0.95$

$$
V=967.7(5) \AA^{3}
$$

$$
Z=1
$$

$D_{x}=2.684 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.61 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Block, colorless
$0.07 \times 0.04 \times 0.02 \mathrm{~mm}$

> 10827 measured reflections 5089 independent reflections 3196 reflections with $I>3 \sigma(I)$ $R_{\text {int }}=0.0209$ $\theta_{\max }=29.1^{\circ}$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022\)
\(w R\left(F^{2}\right)=0.047\)
\(S=0.88\)
3196 reflections
281 parameters
H -atom parameters constrained
\(w=\left[1-\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / 36 \sigma^{2}(F)\right]^{2 /}\)
    \(\left[5110 T_{\mathrm{o}}(x)-6330 T_{1}(x)+\right.\)
    \(5870 T_{2}(x)-2030 T_{3}(x)+\)
    \(891 T_{4}(x)\) ]
```

Table 1
Selected bond lengths (\AA).

Mo1-O1	1.712 (3)	Mo3-O4	1.943 (3)
$\mathrm{Mo} 1-\mathrm{O} 2$	1.693 (3)	$\mathrm{Mo3}-\mathrm{O} 4^{\text {i }}$	2.373 (3)
Mo1-O3	1.936 (3)	Mo3-O8	2.147 (3)
Mo1-O4	2.204 (3)	Mo3-O9	1.777 (3)
Mo1-O5	1.994 (3)	Mo3-O10	1.696 (3)
$\mathrm{Mo} 1-\mathrm{O} 11^{\text {i }}$	2.314 (3)	Mo3-O11	1.875 (3)
Mo2-O4	2.261 (3)	$\mathrm{Mo} 4-\mathrm{O3}^{\text {i }}$	1.918 (3)
Mo2-O5	1.886 (3)	$\mathrm{Mo} 4-\mathrm{O}^{\text {ii }}$	2.029 (3)
Mo2-O6	1.701 (3)	Mo4-O8	2.187 (3)
Mo2-O7	1.785 (3)	Mo4-O11	2.260 (3)
Mo2-O8	1.899 (3)	Mo4-O12	1.709 (3)
$\mathrm{Mo} 2-\mathrm{O} 9^{\text {i }}$	2.228 (3)	Mo4-O13	1.702 (3)

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 10$	1.00	2.04	2.859 (5)	138
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 13^{\text {ii }}$	1.00	2.15	2.854 (5)	126
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 1^{\text {iii }}$	1.00	1.88	2.861 (5)	165
N2-H7 . $\mathrm{O}^{\text {1 }} 1^{\text {iv }}$	1.00	1.95	2.932 (5)	166
N3-H8 $\cdots{ }^{\text {a }}$	1.00	2.25	2.934 (5)	125
N3-H8 $\cdots{ }^{\text {O }}{ }^{\text {v }}$	1.00	2.26	2.955 (5)	125
$\mathrm{N} 4-\mathrm{H} 13 \cdots \mathrm{O} 2^{\text {vi }}$	1.00	2.05	3.004 (5)	158
$\mathrm{N} 4-\mathrm{H} 14 \cdots \mathrm{O}{ }^{\text {i }}$	1.00	1.87	2.867 (5)	174

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x+1,-y+1,-z$; (iv) $-x,-y+1,-z+1$; (v) $-x+1,-y+1,-z+1 ;$ (vi) $-x,-y,-z+2$.

H atoms were positioned geometrically after each cycle in idealized locations ($\mathrm{C}-\mathrm{H}=1.00-1.01 \AA$ and $\mathrm{N}-\mathrm{H}=1.00 \AA$) and refined as riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: CRYSTALS.

We thank the Donors of the American Chemical Society Petroleum Research Fund for support of this research. ANS gratefully acknowledges support from the National Science Foundation (Award No. CHE-0215963).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Böschen, I., Buss, B. \& Krebs, B. (1974). Acta Cryst. B30, 48-56.
Chakrabarti, S. \& Natarajan, S. (2002). Cryst. Growth Des. 2, 333-335.
Cruywagen, J. J. (2000). Adv. Inorg. Chem. 49, 127-182.
Dowty, E. (2002). ATOMS. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.
Fang, R.-Q., Zhang, X.-M., Wu, H.-S. \& Ng, S. W. (2004). Acta Cryst. E60, m359-m361.
Gutnick, J. R., Muller, E. A., Narducci-Sarjeant, A. \& Norquist, A. J. (2004). Inorg. Chem. 43, 6528-6530.
Kunz, M. \& Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Lindqvist, I. (1950). Ark. Kemi, 3, 349-355.
Muller, E. A., Cannon, R. J., Narducci Sarjeant, A., Ok, K. M., Halasyamani, P. S. \& Norquist, A. J. (2005). Cryst. Growth Des. 5, 1913-1917.

Muller, E. A., Narducci Sarjeant, A. \& Norquist, A. J. (2005). Acta Cryst. E61, m730-m732.
Nelson, J. R., Narducci Sarjeant, A. \& Norquist, A. J. (2006). Acta Cryst. E62, m1448-m1450.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon. Oxfordshire, England.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Thorn, K. J., Narducci Sarjeant, A. \& Norquist, A. J. (2005). Acta Cryst. E61, m1665-m1667.
Veltman, T. R., Stover, A. K., Narducci Sarjeant, A., Ok, K. M., Halasyamani, P. S. \& Norquist, A. J. (2006). Inorg. Chem. 45, 5529-5537.

Watkin, D. (1994). Acta Cryst. A50, 411-437.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

